
02 Function, Object and

File
• Functions, Generators, Co-routines

• Objects and classes, Exceptions and modules

• File Input and Output

2

15

Functions

• use the def statement to create a function

def remainder(a,b):

q = a // b # // is truncating division.

r = a - q*b

return r

• To invoke a function, simply use the name of the

function followed by its enclosed in parentheses,

result = remainder(37,15)

3

15

Functions

• To assign a default value to a function parameter,

use assignment:

def connect(hostname, port ,timeout=300):

4

15

Generators

• A function can generate an entire sequence of

results if it uses the yield statement.

• next() : produces a sequence of results through

successive calls

5

15

Co-routines

• Functions operate on a single set of input arguments.

• A function can also be written to operate as a task

that processes a sequence of inputs sent to it.

• This type of function is known as a coroutine and is

created by using the yield statement.

6

15

Co-routines

send()

• A coroutine is suspended until a value is sent to

it

close()

• This continues until the coroutine function

returns or close

7

15

Objects and classes

• All values used in a program are objects.

• An object consists of internal data and method that

perform various kinds of operations.

>>>items = [37, 42] # Create a list object

>>>items.append(73) #Call append() method

8

15

Objects and classes

• dir() : lists the methods available on an object and is

a useful tool for interactive experimentation.

• Special methods that always begin and end with a

double underscore. Eg. __ init__()

9

15

Exceptions

• If an error occurs in program,an exception is raised

and a traceback message appears:

Traceback (most recent call last):

File "foo.py", line 12, in <module>

IOError: [Errno 2] No such file or directory: 'file.txt‘

• The traceback message indicates the type of error

that occurred, along with its location.

10

15

Modules

• Python allows you to put definitions in a file and use

them as a module that can be imported into other

programs and scipts.

file : div.py

def divide(a,b):

q = a/b # If a and b are integers, q is an integer

r = a - q*b

return (q,r)

11

15

Modules

• To use your module in other programs, you can use

the import statement:

import div

a, b = div.divide (2305, 29)

• To load all of a module’s contents into the current

namespace, you can also use the following:

from div import *

12

15

Modules

• If you want to import a module using a different name,

supply the import statement with an optional as

qualifier, as follows:

import div as foo

a,b = foo.divide(2305,29)

13

15

Modules

• To import specific definitions into the current

namespace, use the from statement:

from div import divide

a,b = divide(2305,29)

14

15

File Input and Output

• returns a new file objectopen()

• reads a single line of input,

including the terminating newline
readline()

15

15

File Input and Output

• print the output to a file>>

